MATHEMATICAL STRUCTURES IN LOGIC EXERCISE CLASS 1

Posets and (distributive) lattices

February 6, 2018

- 1. Suppose (L, \lor, \land) is a lattice. Recall that we defined a relation $a \le b$ iff $a \land b = a$. Now define a relation \le' on L via $a \le' b$ iff $a \lor b = b$. Show that $\le = \le'$.
- 2. Show that every lattice satisfies:

$$(x \land y) \lor (x \land z) \le x \land (y \lor z)$$

- 3. Recall that in class we defined on a lattice (L, \leq) $a \wedge b := \inf\{a, b\}$ and $a \vee b := \sup\{a, b\}$. Show that these operations satisfy
 - $x \lor (y \lor z) = (x \lor y) \lor z$
 - $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- 4. Funny examples:
 - a. Give an example of a lattice (L, \leq) such that no infinite subset $X \subseteq L$ has a least upper bound.
 - b. Consider the poset (\mathbb{N}, \leq) . Is this a lattice? Is it complete?
 - c. Find an example of a lattice (L, \leq) that contains a subset $A \subseteq L$ such that $\inf A$ and $\sup A$ exist but $\sup A \neq \inf A$ and $\sup A \leq \inf A$.
 - d. Find an example of a poset where $\inf \emptyset$ does not exist.
 - e. Give an example of a lattice (A, \leq) and a subset B of A such that $(B, \leq |_{B \times B})$ is a lattice, but B is not a sublattice of A.
- 5. Let $f : (L, \leq) \to (L', \leq')$ and $g : (L', \leq') \to (L, \leq)$ be order-preserving maps between the lattices (L, \leq) and (L', \leq') such that g(f(x)) = x for all $x \in L$ and f(g(y)) = y for all $y \in L'$. Show that f and g establish a lattice isomorphism between L and L'.
- 6. Which of the following lattices are modular and which of them are distributive?

7. If (X, \leq) is a partial order, then the *covering relation* \prec on X is defined as

$$x \prec y \iff x < y \& \forall z \in X (x < z \le y \implies z = y).$$

Given two partial orders (P, \leq_P) and (Q, \leq_Q) we define a relation \leq on $P \times Q$ via $(p,q) \leq (p',q')$ iff $p \leq_P p'$ and $q \leq_Q q'$.

- a. Prove that \leq is a partial order on $P \times Q$.
- b. Prove that $(p,q) \prec (p',q')$ iff

$$(p = p' \text{ and } q \prec_Q q') \text{ or } (p \prec_P p' \text{ and } q = q')$$

- 8. Prove that the absorption laws imply $a \wedge a = a$ and $a \vee a = a$.
- 9. Find all posets with 4 elements. (Hint: There are 16 up to isomorphism.)